Keystroke Dynamics Recognition: Theory, Methods and Application
Definition & Overview
Keystroke dynamics recognition (KDR) is based on identifying tempo, rhythms and manner of keyboard typing that is intrinsic to a specific individual. The concept can be traced back to the 19th century when telegraphy first appeared. It was relatively easy to recognize an operator by the manner they applied the Morse code. It is known that fine motor skills directly correlate with a personâs cognitive abilities and temperament â elements that serve as a personality foundation. The Culture of Ham Radio mentions that "The way a person sends code is almost as distinctive as his voice". These observations allowed distinguishing friendly operators from the enemy during the WWII with a technique dubbed The First of the Sender.
Keystroke dynamics can be used as an additional security layer along with biometrics, knowledge and token types of authentication. This method is generally seen as passive and unintrusive: it does the analysis while a person enters a password. At the same time, experts voice a concern that it can make authentication costlier and slower.
Areas of Application
There are 3 major types of authentication:
- Knowledge. Something a person knows: password, PIN, etc.
- Token. A specific item that only a person in question owns: mobile phone, SIM-card, passport, etc.
- Biometrics. A parameter an accessor has from birth: fingerprints, blood type, voice, iris pattern.
Biometrics also have a subtype, which focuses on a personâs behavior: logging in/out schedule, online surfing/shopping habits, frequency of search requests, and so on. Keystroke dynamics are a part of behavioral biometrics as every individual tends to have a unique typing manner.
As a result, the method can enhance a static authentication modality, which solely depends on a reusable authenticator: password, secret phrase or a PIN. Its main vulnerability is that such an authenticator can be stolen through sniffing, eavesdropping, screenshotting or IP spoofing. Besides, KDR is seen as a promising solution for monitoring shared computer sessions as it can lock sensitive data to unauthorized users, raise an alarm in case of abnormal behavior or even detect a userâs gender.
Advantages & Disadvantages of Keystroke Dynamics Recognition
KDR has a number of pros and cons regarding its accuracy and implementation.
Advantages
It offers the following benefits:
- Uniqueness. As typing has a unique character in each personâs case, it can be measured with a surgical precision with a specific algorithm.
- Minimal invasiveness. The method does not collect highly private biometric or personal data and works in a background mode.
- Enhanced password security. KDR can increase the lifespan of a password and increase its overall efficacy.
- Resistance to hacking. Replicating KDR is extremely difficult. It makes typical hacking attacks â like brute force â useless since the system offers a limited number of retries.
Besides, KDR does not require dedicated gear to function, unlike many biometric solutions.
Disadvantages
The major drawbacks of the method are:
- Increased wait time. While working in the backend, KDR can toll the system with an extra wait time. Especially if it is not cloud-supported and runs on a decrepit device.
- Accuracy issues. Typing patterns may vary depending on fatigue, distractions, medical intoxication, userâs mood shifts, and other factors.
- Decreased permanence. As a gained skill, typing can change over the time, which requires changing the keystroke profile.
Accuracy and permanence issues are the central problems of this approach.
Basics of Keystroke Dynamics Recognition
Here is a brief overview of how a KDR system works.
Capturing Keystroke Information
Basically, this is an enrollment stage, during which a user is prompted to type a text, on which their authentication profile will be formed. All subsequent access attempts will be matched against the given sample until it is changed.
General Structure of Keystroke Dynamics Recognition System
Typically, KDR architecture includes the following elements:
- Data acquisition. Typing samples are acquired via an input device: computer keyboard, numpad, touchscreen, etc.
- Feature extraction. With steps like feature selection and outlier detection, a reference pattern will be created.
- Classification. It includes data categorization and discrimination.
- Decision. At this stage reference data is compared against the input. To increase authentication accuracy, some fusion methods can be used.
Additionally, the architecture includes retraining in case a new reference template should be created.
The Main Methods of Keystroke Dynamics Recognition
Methods used in KDR include:
- Statistical approach. It includes standard elements such as đ-nearest neighbor, statistical đĄ-test, median deviation, etc.
- Probabilistic modeling. Based on a notion that keystroke feature vectors are predefined by Gaussian distribution, it employs such techniques as Hidden Markov Model, Gaussian Density Function, and others.
- Cluster analysis. This idea suggests gathering similar characteristics pattern vectors to form a consistent, homogeneous cluster. (E.g. fuzzy C-means.)
- Distance measure. This method estimates similarity or dissimilarity with a reference template using Euclidean distance, and other techniques.
Machine learning and Deep Neural Networks (DNNs) are also employed. For their training keystrokes of both the legitimate claimant and potential intruder can be used. Other methods include evolutionary computation, decision tree, fuzzy logic, Support Vector Machine, etc.
User Verification, Identification & Recognition
Verification framework in KDR consists of the following components:
- Enrollment. A Userâs model and reference template are created from the keystroke samples.
- Outliers detection. Presence of outliers impacts performance of the classifiers during matching/verification.
- Preprocessing. This step implies data normalization (with a normalization function) before further analysis.
- Feature selection. Useless and irrelevant features are removed to increase operational speed.
- Model computation. A model is computed to ensure user verification in the future. It can be done with learning clusters using k-mean, calculating standard deviation of enrolled samples and the mean vector, etc.
(Model computation can be based on both data mining and statistics.)
Evaluation of Keystroke Dynamics Recognition Systems
A KDR system is attested using three factors:
- Performance. It considers the biometrics standards estimating Failure-To-Enroll rate, Equal Error Rate, and other metrics.
- Satisfaction. It measures acceptance of the KDR approach among the users, as well as its ease-of-use and, perchance, commercial performance.
- Security. This aspect focuses on Presentation Attack (PA) resistance potential, false Acceptance Rate (FAR), and other nuances.
Note: Performance and security metrics are taken from the ISO standardization (such as ISO/IEC 19795-1.)
The influence of Emotion on Keyboard Typing
The emotional state of an individual is seen to have an impact on their keystroke dynamics. During an experiment, volunteers were exposed to a sound that could potentially alter their emotional state while typing, such as bird chirping, from the IADS-2 dataset. A study revealed that emotional state affects keystroke duration and latency, while typing accuracy mostly stays the same. (Possibly due to the involvement of muscle memory).
Keystroke Biometrics Ongoing Competition
Keystroke Biometrics Ongoing Competition (KBOC), organized by IEEE and ATVS, is a challenge, which strives to create a baseline that can ensure accurate keystroke dynamics recognition. The contest has a public keystroke dataset with 7,600 sequences recorded from 300 unique individuals.
Keystroke Dynamics in Gender Recognition
It is considered possible to detect genders based on the keystroke dynamics data. As another experiment showed, male typing features a 373.04 ms latency and a 135.26 ms deviation, while female typing has 375.71 ms latency and 116.86 ms deviation.
Keystroke Dynamics Fatigue Recognition
A test, during which volunteers were challenged to type in a password repeatedly, showed that it is possible to detect fatigue levels of a user. An especially accurate result was produced by the key release-to-release data with a 91% accuracy rate. The technique can be used for creating more favorable work environments, among all else.
Authentication Using a Combination of Keystroke & Mouse Biometrics
Computer mouse dynamics can complement KDR as their monitoring and measuring is based on similar principles. To create an authentication template, a user is prompted to perform a fixed task with a mouse. Later, by analyzing mouse dynamics, button clicks, and other actions, a system can tell an imposter from a bona fide user.
Behavioral Biometric Authentication on Smartphones
A Behavioral Biometric Authentication method is proposed for smartphone gestures as well, which consist of strokes â a sequence of consecutive timed points. The method analyzes a userâs finger movement on the screen by extracting a group of features: temporal, geometric, spatial, dynamic, etc. In essence, this method has similar mechanics, advantages and drawbacks as the KDR approach.
FAQ
Keystroke dynamics recognition definition
Keystroke dynamics recognition can identify a person by the way they type on a keyboard.
Keystroke dynamics recognition (KDR) is a biometric modality that focuses on analyzing an individualâs manner of keyboard typing. The way a person types on a computer keyboard proves to be unique in terms of speed, pauses, mistypes and errors, frequently used key combinations, and so on.
Identification, verification and matching are possible due to a biometric template that is created when a user types in the random words/symbols prompted by the system. However, it is assumed that KDR may be prone to misidentification due to behavioral instability: keyboard typing can improve with practice or decline due to simple tiredness.
Is it possible to identify a person with keystroke dynamics?
Keystroke identification has a rich history lasting almost two hundred years.
Keystroke dynamics recognition (KDR) has been known since the 19th century: telegraphy operators could identify each other remotely by the manner of electric key typing (keystroke). Some authors even compared its uniqueness to the human voice.
As a biometric modality, it focuses on the behavioral traits of a person: typing speed, the amount of blunders, preferred key combinations or hot keys, etc. A similar method was used during WWII to identify enemy operators disguising themselves as friendlies.
At the same time, KDR suffered from lower permanence as typing dynamics may change due to fatigue and other factors.
How does keystroke dynamics recognition work?
Keystroke dynamics recognition analyzes unique behavioral traits intrinsic to keyboard typing.
Keystroke dynamics recognition or KDR focuses on how a particular person types on a keyboard. It analyzes such attributes as tempo, time intervals, frequent key combinations, and other nuances inherent to how a person types.
Uniqueness of the method has been known since the era of electric telegraphy. During WWII it was used to identify hostile impostors who tried to spread disinformation under the guise of friendly operators.
To employ this method, a person is prompted to type a text. After that an authentication profile is created by the system â it will perform biometric verification every time a subject enters a password.
What is keystroke biometrics?
Keystroke biometrics is a subset of biometric science, which focuses on keyboard typing dynamics.
Keystroke biometrics are used to analyze how an individual types on a keyboard. This modality can be used as an additional protection layer as itâs cheap and highly unintrusive.
The system creates an authentication template by examining how a user types a sample text. During the procedure, it will register such characteristics as tempo, cadence, and so on.
As a result, it can identify a userâs keystroke manner with a surgical precision â spoofing such a system would be useless. At the same time, it can be prone to a higher False Reject Rate (FRR) as typing can change due to physical fatigue, intoxication, emotional state, etc.
References
- Relations between fine motor skills and intelligence in typically developing children and children with attention deficit hyperactivity disorder
- The Culture of Ham Radio
- The physiology of keystroke dynamics
- The Telegraph Operator
- A Survey of Keystroke Dynamics Biometrics
- Enrollment and authentication of the keystroke dynamics
- KDR can be potentially implemented in banking and real pinpads
- Fuzzy C-Means Clustering
- Evolutionary computation
- Decision Tree and Random Forest Algorithms: Decision Drivers
- Fuzzy logic
- Support Vector Machine
- Archive ouverte HAL
- ISO/IEC 19795-1:2021 Information technology â Biometric performance testing and reporting â Part 1: Principles and framework
- The Influence of Emotion on Keyboard Typing: An Experimental Study Using Auditory Stimuli
- Affective auditory stimuli: adaptation of the International Affective Digitized Sounds (IADS-2) for European Portuguese
- Keystroke Biometrics Ongoing Competition (KBOC)
- Database & Evaluation
- Keystroke Dynamics Features for Gender Recognition
- Analysis of Keystroke Dynamics for Fatigue Recognition
- A study on Continuous Authentication using a combination of Keystroke and Mouse Biometrics
- A Survey on Behavioral Biometric Authentication on Smartphones